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ON THE STRESS-STRAIN STATE NEAR A THREE-DIMENSIONAL CRACK
IN A TWO-SHEETED SURFACE*

V.V. SIL'VESTROV

A limit scheme of a two-sheeted Riemannian surface ig used to illustrate
special features encountered in the course of the study of the
asymptotic form of the stresses and displacements near the edge of a
three-dimensional crack. The fundamental first, second and mixed
boundary-value problems are formulated on this surface by analogy with
the case of a single plane, and are solved explicitly by quadratures by
reducing them to a Riemann boundary-value matrix problem with a constant
coefficient. The sheets of the surface are in a generalized plane
stress state and have, generally speaking, different stress constants
and different thicknesses. A scheme for investigating the stress-strain
state of another two-sheeted construction different from the Riemannian
surface is elucidated briefly.

A real crystal can naturally be interpreted within the framework of the classical theory
of elasticity as a set of elastic interacting planes corresponding to the layers of atoms.
Various defects and dislecations /1, 2/ connect the similar surfaces, and it is therefore
best to use the methods of the theory of elasticity to multisheeted surfaces when dealing
with prescribed types of dislocations.

1. Types of consiructions. Let E;, E, be homogeneocus, elastic, isotropic infinite thin
plates with cuts along the same segment Iy =la;, b1 {j =1,2,...,m) of the real z-axis. We
shall assume that the plate E, (k =1,2) has a thickness of h, and is characterized by
elastic constants p, » = (3 — v)/(1 + v;), where p, is the shear modulus and vy iz Poisson's
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ratio. We denote the set of cuts in the plate E, by Ly, and the upper and lower edges of
these cuts by Lyt and Ly~ respectively

j: m
L= 1 LCE
=1
Let the plates E,, E;, be placed on top of each other so that the j-th cut in the upper

plate is situated over the j-th cut of the lower plate E, (Fig.l), and the edges of the cuts
are joined in a unique manner in one of the following ways.

Fig.l Fig.2

A. The lower edges L,” of all cuts in the upper plate are joined to the upper edges L,
of the cut in the lower plate. If we look from the left end of the cut [, the joint will
look, schematically in the vertical plane without taking into account the thickness of the
plates, as in Fig.2a. The resulting system of plates represents a Riemannian surface of the

function
w =z — a,)}(z — by). .. (g — ap)(z — by)l"s (1.1}

with the edge L,*|j L,”. If we mentally join the edges L,* and L, , i.e. make them identical,
then we will have a closed Riemannian surface.

B. The lower edges L, of the cuts in the upper plate are joined to the lower edges L,
of the cuts in the lower plate (Fig.2b).

We shall assume that: 1) the corresponding cut edges are joined without tension and with-
out any intermediate layers between the edges, by glueing, cross-linking, welding, stamping,
etc., 2) the spatial effect of concentration of the stresses along the line of joining is
vanishingly small, 3) the plates are in a state of generalized plane stress and interact with
each other only through the joined edges of the cuts, 4) the stresses are distributed uniformly
at the point at infinity of the plate E,(k =1,2), where the principal stresses (o), and
(0,)s act in directions making the angles @, and @, -+ n/2, respectively, with the real
axis and the rotation at infinity in the plane E, is equal to w, 5) the stresses and dis-
placement derivatives at the cut ends can become infinite of the order of less than unity, and
be continuous at all remaining points of the cuts.

We shall call the problems corresponding to these cases problems 4 and B, and the con-
structions themselves the constructions 4 and B. In all cases the stresses (o, 0, Tk Per
unit thickness of the plate and derivatives with respect to T of the displacement components
(u's ')y in the plate FE; will be expressed in terms of two functions O (3), ¥y (z) (z =2z +
iy) according to the formulas /3/

(0. + oyl = 4 Re @y (2) (1.2)
(oy — Tyl = Dy (2) + Q @) + (2 — DD, (2)
2 (0 + ) = 0Dy (5) — (B — 2 — 2) D (@)
O (3) = Dy (2) + 2@y’ (2) + T (2), k=1,2

The functions are analytic and single-valued in the plane E; with cuts I; (j =1,2,...,m),
and have the following form in the neighbourhood of oo:

P 1 -
¢’k(3)=7k—m7+0(z 2) (1.3)
— - x, P 1 ~
Qp(2) =¥y + Vi + MZ:\:“K-T-];“ e +0(=z?)
1 2ip o,

. )
V=7 (0y + Ga)y - Thw, * V=T (02 — 0y) exp (— 2igy) (1.4)
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Here —P, = —(X; + i¥},) is the principal vector of the forces applied to the set of cuts
L, from the side of E; per unit thickness of the plate. We shall assume that the numbers
P, P, are known. In some cases, e.g. in the first fundamental problem 4, it is sufficient
to specify one of these numbers, while the other is found from the boundary conditions and the
condition of equilibrium of the whole system of plates K, E, or from other auxiliary con-
ditions which will be discussed later. At the ends of the cuts the functions &, Q, may
pbecome infinite of order less than unity, and at all remaining points of the cuts they will
have continuous boundary conditions. Moreover, we shall assume that

(6 —2) D (B)—>0 as z—>1%, k=1, 2 (1.5
at all points of the cuts except the end points.

In all the problems discussed below the above condition is satisfied by virtue of the
H-continuity of the given boundary conditions.

2. Problem A. 1°. Formulation of the problem. We shall assume that at the non-joined

edges L, and L, we know either the normal and shear stresses ({(o,, Tyh" and  (oy, Tyl
{the first fundamental problem A), or the derivatives in ¥ of the displacement components
W, v')’ and (¥, V') ({the second fundamental problem 4), or that we know the stresses

(04> T, at one of the edges, e.g. at IL;*, and the derivatives of the displacements (v, ')y
at the other edge [L,” (the fundamental mixed problem A4). In all cases we assume the given
boundary conditions to be H-continuous, and in the second problem we have

Clw + )y — @+ w)lde =0,/ =1,2, ..., m 2.1
y

which expresses the uniqueness of the displacements under the total passage along the cuts
over the segment [; in the plates E, and &E,.

Since in this case the system of plates E;, E, with identical edges L,* and Ly
represents a Riemannian surface of the function (1.1), it follows that the problems formulated
above can be regarded as problems on this surface with a three-dimensional cut with the edges
L* and L,”, situated in different planes E,; and E,.

2°. The boundary value problem for complex potentials. Using relations {1.2) and con-
dition (1.5), we can write the boundary conditions at the edges [, and L, for all
problems A in the following unigue form:

@) = Q@) =FH0E D)+ L) =10), tsSL= ’Ql 2

where v, =1, /i () = (0, — #tolyt and vy = =%y, fi (1) = —2p (@' + @&'),T provided that the
stresses or displacement derivatives are specified on I, *. The superscript plus is taken at
k=1, and the superscript minus at % ==2, The joining of the edges L, and L, without
stretching is described, by virtue of (1.2) and (1.5), by the relations

D@+ Q@) =k (@ (1) -7 () b =Ry
poa® () —QF (1) =D () — Q2 (), p =iy, t s L

By the same token we obtain the functions @,,Q (k = {,2) from the Riemann boundary
value matrix problem

D (t) =A"BO- (1) + A f(@), te= L (2-2)
(D (7‘) = COI {q);h mza Ql’ 92}1 j (t) = COI {fl) fZ’ 0» O}
vy 6 0 0 g g —1 o
0 G 0 1 G e, (LI
A=l w10l B=l_1 o o4 (2.3
0 ®p p 0 Hylh 0 0 1

The function ®(2) may become infinite of order less than unity of the ends of the line
L, and in the neighbourhood of oo it has, by virtue of (1.3), the form

Q@) =6+Hz*+0 (2% (2.4)
G=1col (Y. V2. V1 + T V2 + T’}
H= (231:)'1 col {— Plo., - on’. %1P1°: xZPSO}‘L P}cn == Pk/(1 + "k)v‘ k== 1,2 (2'5)
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where O'(z* is a vector function whose every component will be comparable, at large 2z, with
z"2.

3°. The solution of the problem. Let M\ (k=1,2,3,4 be the eigenvalues of the matrix

A7B. In the case of the first and second problem we have
_ _ [ ova (1 4 phxy) Ve
Ma=H1 ha= il[ vy (Wh - %) ] (2-6)
where v, =v, =1 in the first problem, and v; = —¥%;, v, = —%, in the second problem, while
in the case of the mixed problem all A, will be complex and given by the eqguation
(B + %) M — (2013 — ph (g + %a)) A* + 3%, (1 -+ phizg) =0 (2.7

We assume that all roots of this equation are different. Then /4/ there exists a non-
degenerate matrix S such that the matrix S'47'BS will be diagonal with the numbers A, (k=
1, 2, 3, 4) serving as its diagonal elements, and the columns of the matrix S will be the
eigenvectors of the matrix A7'B. The form of the diagonal matrix will be independent of the
choice of these vectors. For example, we can take as S

Ry (1 4 )
14 phwy + A2y (Wb — 1)
S= e =11 S5 (2:8)
— R (1 + %2)
Ay (2 — phxy — A4,‘2"’1 (Bh 4+ %2)) Mhe—p.2.3.4
The symbol || ...{lk=1.2,3.4 denotes here a four-column matrix whose k-th column consists of

the elements shown within the bracket. In what follows, we shall also encounter the symbol

[I-.. 5%,  which denotes a column vector consisting of the four elements shown within the
bracket.
We shall seek the function @ (z) in the form

D (z) = SF (2) (2.9)

where P (z) =| Fylli~" is a new unknown piecewise-holomorphic vector function. Then from (2.2)
we obtain

Fr@) =MFy () +a () t=L, k=1,2,3,4 (2.10)

where g are components of the column vector || g ||';=l = ST147Y, The functions F; may become

infinite of order less than unity at the ends of the line L, and near o they will have, by
virtue of (2.4) and (2.9), the form

| FAE= = F(3) = 8@ = §71G + SWHz 4+ 0 (z7%) (2.11)

According to /5/ the solutions of problems (2.10) will be the functions, which we shall
write in the following unique form in order to facilitate the subsequent calculations:

t { 8k © a4t \ m
Fy(2) =Xy (2) <7n? > X 1—z2 + ko + CaZ b Cppl ) (2.12)
b, ey ke 1
Xy (Z)=(H — ) I R (2.13)
j=1 i j=1 7

ay + ify = (In A)/(2ni), k=1, 2, 3, 4

where InA; are defined in such a manner that 0<{ImlnA; < 2n, and in the case of multi-
valued functions X; we take the branches which are single-valued in the place with a cut in

L and satisfy the conditions lim z™X, () =1 as z— co. Moreover, since A, =1, we must
put in the first and second problem
X,@=1 ¢y =c¢cg=...=¢m=0 (2.14)

In the first and second problem we obtain, from (2.11) and (2.12), taking into account.
(2.14),
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. — 2y S £ (8) dt
L
“m == §71G, S m-1 T m | = STIH (2.15)
“3m €3, m-1 1 95Cgm
Cam €,m-1 1 94y

g = (o + B) (@ + a2+ .. + am) + (1 — oy — if) (by + by + . . + bm)

The form of the first element of the column vector S7'H follows from the boundary
conditions and the condition of equilibrium of the construction A. In the mixed problem,
(2.11) and (2.12) yield

il ckm'l;‘:l = 87G, || ¢, my + GxCym ”};::1 = SH (2.16)

where ¢; are found in the same manner as in the first and second problem.

4°. Determination of the constants c¢y;. If m =1, then relations (2.14)-(2.16) will

yield the values of all the constants cgj- When m >1, to determine the remaining con-
stants in the first problem we must require that the displacement increments along the closed
curves formed from the cut edges [ (j =1,2,...,m —1) in every plate E,, E, and the curves
formed from the segments [b;, a;,] (j =1,2,..., m —1) situated in £, and £,, be equal to

zero. This can be explained by the fact that construction A represents a (3m — 2)-ply con-
nected region on the Riemannian surface of the algebraic function (1.1) /6/. We have in this
region 3m — 3 of the mutually non-homotopic closed curves such that all remaining closed
curves can be obtained from them by (one or several) continuous deformation(s) within the
boundaries of the region. The curves shown above, along which the displacement increments
must be equal to zero, are examples of such non-homotopic curves. From this we obtain, using
(1.2), (2.3) and (2.9),

4
,,2 (%251x + Sa) ,S (Fi* (t) — Py (9 dt =0 (217)
=1 5
4
S (%aSx + S4k>§ (Fi* (t) — Fy (1) dt =0 (2-18)
k=1 .
4 ! aj4+1
2 (W (S — Sg) — %aSax -+ Sa) § Fe(t)dt =0 (2-19)
=1
j=1, 2,...,m—1]

where S;. are the elements of the matrix S. Replacing Fy in these equations by their values,
we obtain a system of 3m — 3 linear algebraic equations for determining the remaining

3m —3 constants ¢ (k=2,3,4j=0,1,...,m —2). The unique solvability of this system

is proved in the same way as the classical case (/3/, p.442).

In the second problem conditions (2.18) follow from conditions (2.1) and (2.17), there=~
fore they must be replaced by specifying additional m — 1 conditions. These conditions
will be obtained, provided that the difference between the displacements of the points b; a;,
are known. Then, according to Egs.(1.2), (2.3) and (2.9) we will have

4 i1
D) (81 — Sy bS Fie (@) dt = 2py [ (a301) + iv(agen) — u (b;) — v (b)), (2.20)
k=1 .
J
i=12,....m—1
Instead of the difference between the displacements of the points b; and ajy, We can

also specify the principal vectors of external forces acting on the non-joined edges of the
cuts It in plate E;, and !;- in plate Z;, together or on one of the edges. Then one of
the following conditions must hold (j=1,2,..., m—1):

M»

$(SuFit () + Sy () dt = iQyy 2.21)
i

a
Il

3l

M=

=
||
A

((SuFi (1) + SwFt (1) dt = — iQys 2.22)
i
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=

§(Sa— S Fi (0) + (Sy — Sw) Fy~ (@) dt = iQ; (2.23)
k=1 4y
where @, @, and @; are the principal vectors of external forces acting, respectively,
on the edge I, in plate £, on the edge I~ in plate F,, and on the set of edges L' in
E, and ! in E, The conditions (2.17) and (2.19) and one of the conditicons (2.20)-(2.23)
form, at every j(j=1,2,...,m —1), a uniquely solvable system of 3m — 3 equations for
determining 3m — 3  unknown constants ¢ and different conditions can be taken from the
group of conditions {2.20)-(2.23) for different j.

In the mixed problem for determining 4m —4 constants ek =1,2, 3,47=0,1,...,
m— 2) , we must take the conditions {2.17)-(2.19) and one of the conditions (2.20)-(2.23)
for every j. The conditions form a uniquely solvable system of 4m — 4 equations.

5°. Methods of specifying the numbers P,, P, In the first problem it is sufficient to
specify one of these numbers. The other number can be found from the relation

m
By Py 4 hyPy = — Z S(hl (T -+ 100 = o Ty -+ Gy )p7) d2
i

=1 i

expressing the equilibrium of the whole construction A. Both these numbers can also be found
if the difference between the displacements of any two tips of the cuts is known, e.g. the
displacement between the points a; and &§. Such a situation arises e.g. in the following

problem: for the given stresses in L;” and L, to choose the numbers P,, P, so that the
displacements of the points ¢, and b, differ from each other by a prescribed amount.
In the second problem we should specify both numbers Py, Py, or one of them, and in

order to determine the other one we should specify the principal vector of external forces
applied to one of the edges L,* and Ly, or to the set of edges I,*,1,”. The numbers P,
P, can also be found if the principal vectors of the forces acting at the edges [, and
L, respectively are given.

In the mixed problem both numbers P, P, must be specified, or one of them and the
principal vector of external forces acting on L,". Then the other number can be found from
the condition of equilibrium of construction A. Other methods also exist of specifying the
numbers £, P,.

6°. The behaviour of the stresses and displacement derivatives near the cut ends. Accord-
ing te (2.12), the functions Fy (2} in the first and second problem have the following form
/5/ near the point z = g;:
Fy{t) =Dojin(z —a)) + 0 (1), Doy = —g (a;)/2ni (2.24)
Fy(2) = Dyj (z — ay ™ L O(1), k=234 (2.25)
1 & ® dt A
Dy = my; (ay) (2—m—§ _——X:}(‘) )-——— + Cypo + Ca; + oo + (‘;\.main) (2.26)

t—3z

My (3) = Xy (2) (5 — ap)™

The functions X, gy are given by (2.13), the numbers ¢; are defined above, and we
mean by (z — af)“k“sk the branch, single-valued in the plane with a cut along the ray [aj, +
o) of the real axis, which takes the value 1 at the upper edge of the cut at z—a; =1.
The integral in (2.26) exists as an improper integral, In the mixed problem all functions
Py, including F;, have the form (2.25). In the first and second problem we find from (1.2),
{2.3), (2.9), (2.24) and (2.25) the following asymptotic representation of the stresses and
displacement derivatives near the point 2z = g; in plate £;:

s
(0x + 0y); =4 Re ( 2 SuDysops (z)) +O(lnr) (2.27)

(o, — iTy) 1) , & [ 1 4 _
{Em - ;,3)1} =1 2 Sulbyon @) + | _ J (3 1S @) +
(o — 1) SuDis (1 —~ (2 — a)) /T — ag)) @, (] + O (Inr)

=|z—a;ls op(a)=(z—a) P, je1,2,...m
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The constants o, B, S; and D,; are given by (2.6), (2.8), (2.13) and (2.26), vre-
spectively.

In the mixed problem we must take all sums in the above representations over k, from 1
to 4. The constants «; and B, are found from (2.13) and (2.7).

In order to obtain the analogous representations near the point z = b; in the plate E,,
we must replace a; in (2.24)-(2.27) by by, oy + iy on {1 —a, —if;, and to obtain the
representations near the tips of the cuts in the plate E, we must replace %; by %, |, by
#t, and the numbers S;; and Sg by Syi and S, (k =1, 2, 3, 4), respectively.

The numbers Dy; in representations (2.25) and (2.27) play the part of the stress
intensity coefficients, and are used in calculating the invariant I'-integrals /7, 8/.

From the representations (2.27) we see that the stresses and displacement derivatives
near the point z = a; have, in general, not only power-type singularities, but also oscil-
latory singularities determined by functions of the form (z — aj)‘iﬂk or, without loss of

generality, by a function of the type [(z — a;)/(b; — aj)l_iﬁ’f. Here, in the case of the first
and second problem, the highest-order singularity is determined by the function (z — a;) "%,
A similar pattern is observed in e.g. (/3/, ch.6) the classical problem of a stamp, or in a
nixed problem for a plane with rectilinear cuts. According to relations (2.13) and (2.6),

1 1 F
Bi=By =0, By=p,———Ineltiim)

In particular, if ph = (v, —v;)/(vs%, —v,), then f, =f, =0and we have nooscillatory-
type singularities. Since the expression under the In sign increases as a function of ph,
it follows that its values at 5/3<l%;, x,<C3 (these constants are such in the case of real
plates) and ph >0 1lie between !y and 3. Therefore

IBs | = | By | << (In'3)/4n = 0.0874

and the oscillatory-type singularities will manifest themselves appreciably only when
|z — a; | < (b; — a;) exp [—2a%In 3] = 1.573.10°8 (b; — ay) (2.28)

where (b; — a;) 1is the length of the cut [;. Clearly, the representations (2.27) occur near
the point z =a; outside a sufficiently small neighbourhood determined by the inequality
(2.28).

7°. A special case. Let us consider the case when we have a single cut [a,b]= [—a, d]
and % = %; = %, Py = Mg, By = hy, i.e. when the construction A represents a homogeneous Riemannian
surface of constant thickness. We can then write the solutions of all problems A4 in the
unique form

D, Ay

D, 1
D(z)=S8F(z), ®= q | S = —vh, ?

2 —Vhie* k=123,

- A0
P1RET R0 = X0 § i et a9

—a

legy 4 yepy 5= = S71H, | o i=2 = 571G, g, [f~1 = 5747 (1)

where in the first and mixed problem v.=v; =1, in the second problem v = —x, in the first
and second problem

hys= 2, Ay a= 4, 1,3 = 0, ga,a = Fa/2
1
X&) =7, X@=06—a iz ta)t0N, £=234
in the mixed problem
M = e exp [in 2k — 1)/4], g = a (5 — 2k + 8iP)/4

. ; Inx
- - K~ -2k
Xk(z) =(z—a) if+(2k-9)/8 (z+atﬁ+(1 2K)/8 B = ol k=1,23,4

and the column vector G, H,f and matrix 4 are given by (2.5), {1.4) and (2.3).
Relations (2.27), in which we must put

o0xj (2) = (z — a)® /1 or @k (2) = (z — o) iBrER-)/8
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hold for the stresses and displacement derivatives near the point a. The largest singularity
in these representations is determined in the first and second problem by the function (z—
ay™s, and in the mixed problem by the function (z— o) %7/

3. Problem B. As in problem A, we assume that either the stresses (the first problem
B) or the displacements (the second problem B) are specified at the non-joined edges L," and
Lyt , or the stresses are specified at one edge and the displacements at the other edge (the
mixed problem B). In addition we must specify the boundary conditions on the line along
which the edges L, and L,  are joined (Fig.2b). If it is the displacements that are
specified on this line, then problem B separates into two independent problems separately for
plates E, and E,, solved in /3/. We shall assume that the external forces (X + iY)yt are
specified on this line. Then we shall obtain the Riemann matrix problem (2.2) with coef-
ficients

w0 00 0 0 —1 0 h
0 v 00 |l o 0 0 -t N
A4=100 —p 1] B=l_p % o o 19=]o
00 14 —1 —r 0 0 fa

b= holhy, 1 = Rolpy, fo () = —i (X 4 i¥)ext

where
Vg = 1, fr (t) = (CF,, - irxv)k+

or

Ve = —up, fi (1) = =2 (' + ') (B =1, 2)
for determining the complex potentials @, @,, Q;, Q,, forming the column vector @ (z), depend-
ing on whether the stresses or displacements are specified on L,*. From then on problem B
is solved just like problem A. Moreover, all results obtained for problem 4 in subsection
3°-6° of Sect.2 hold for problem B with the sole difference, that the eigenvalues A, of the

matrix A™'B  are changed as well as the matrix S whose columns are eigenvectors of the
matrix A 'B. In the case of the first and second problem B we have

Mg = =1, Mgy == i [(phog + %) / (vyv, (ph + 1))
while in the mixed problem all }; are complex and given by the equation
ng (ph 4 1) A% 4 (ph (1 + %yxg) — 2%,) A+ phaty + %, =0

The matrix S has the form

*g—h + vhyP (R + 1) ‘
1+ oy + v (B — 1)
— ik (g — ko + vohi? (B + 1))
— vohg (1 potg + vid® (0 — 1) fet, 2,5, 4

S =
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