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ON THE STRESS-STRAIN STATE NEAR A THREE-DIMENSIONAL CRACK 
IN A TWD-SHEETED SURFACE* 

V.V. SIL'VESTROV 

A limit scheme of a two-sheeted Riemannian surface is used to illustrate 
special features encountered in the course of the study of the 
asymptotic form of the stresses and displacements near the edge of a 
three-dimensional crack. The fundamental first, second and mixed 
boundary-value problems axe formulated on this surface by analogy with 
the case of a single plane, and are solved explicitly by guadratures by 
reducing them ta a Riemann boundary-value matrix problem with a constant 
coefficient. The sheets of the surface are in a generalized plane 
stress state and have, generally speaking, different stress constants 
and different thicknesses. A scheme for investigating the stress-strain 
state of another two-sheeted construction different from the Riemannian 
surface is elucidated briefly. 

A real crystal can naturally be interpreted within the framework of the classical theory 
of elasticity as a set of elastic interacting planes corresponding to the layers of atoms. 
Various defects and dislocations 11, 2/ connect the similar surfaces, and it is therefore 
best to use the methods of the theory of elasticity to 
with prescribed types of dislocations. 

multisheeted surfaces when dealing 

7. "pypes of Co?ls~Wtiorts. Let 6,, E, be homogeneous. elastic, isotropic infinite thin 
plates with cuts along the same segment Lj = fajv bjI fj = 1, 2, . . ., a) OE the real x-axis. We 
shall assume that the plate E,(k = i,Z) has a thickness of A, and is characterized 
elastic constants Pk, xiu = (3 - v%)/(l + v~), where pk 

by 
is the shear modulus and v2 is Poisson's 

QPrikZ.Matsm.Mekkan..~~,1,.123-i31,1990 
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ratio. We denote the set of cuts in the plate E, by Lk, and the upper and lower edges of 
these cuts by Lkc and L,- respectively 

L,* = ij l,*,, 
j=l 

lj c E, 

Let the plates E,, E, be placed on top of each other so that the j-th cut in the upper 
plate is situated over the j-th cut of the lower plate Es (Fig-l), and the edges of the cuts 
are joined in a unique manner in one of the following ways. 

Fig.1 Fig.2 

A. The lower edges L,- of all cuts in the upper plate are joined to the upper edges L,+ 
of the cut in the lower plate. If we look from the left end of the cut l,, the joint will 
look, schematically in the vertical plane without taking into account the thickness of the 
plates, as in Fig.2a. The resulting system of plates represents a Riemannian surface of the 
function 

w = I(2 - a& - b,). . . (z - a,)(2 - b,)l’/~ (1.1) 

with the edge L1+ U L,-. If we mentally join the edges L1+ and L,-, i.e. make them identical, 
then we will have a closed Riemannian surface. 

B. The lower edges L,- of the cuts in the upper plate are joined to the lower edges L, 
of the cuts in the lower plate IFig.2b). 

We shall assume that: 1) the corresponding cut edges are joined without tension and with- 
out any intermediate layers between the edges, by glueing, cross-linking, welding, stamping, 
etc., 2) the spatial effect of concentration of the stresses along the line of joining is 
vanishingly small, 3) the plates are in a state of generalized plane stress and interact with 
each other only through the joined edges of the cuts, 4) the stresses are distributed uniformly 
at the point at infinity of the plate Ek (k = 1, 3, where the principal stresses (cQ)~ and 

(o,)~ act in directions making the angles (ok and (9k -t s/2, respectively, with the real 
axis and the rotation at infinity in the plane ,?& is equal to q, 51 the stresses and dis- 
placement derivatives at the cut ends can become infinite of the order of less than unity, and 
be continuous at all remaining points of the cuts. 

We shall call the problems corresponding to these cases problems A and B, and the con- 
structions themselves the constructions A and B. In all cases the stresses (u~,cQ,~,~)~ per 
unit thickness of the plate and derivatives with respect to x of the displacement components 
(U'r U')k in the plate Ek will be expressed in terms of two functions Qk (8), Y,, (2) (2 = E + 
iY) according to the formulas /3/ 

((3, + cy)r == 4 Re CDh (z) 

(VII - &Jr = @'r (Z) + Q,(Z) + (z - Z)W 

2p, (11’ + iv’), = xQ& (2) - &r (2) - (2 - Z)qqx) 

nh (2) = Gk (2) $- zqk (2) + !i!k (Z), k = 1, 2 

The functions are analytic and single-valued in the plane El, with cuts lj (j 
and have the following form in the neighbourhood of CO: 

Yk = $( 

WkOk 
(Jl -t %)k L l+x, yk’ = + (a2 - a,) exp (- 2icpkj 

k 

(1.2) 

1, 2, . . ., m), 

(1.3) 

(1.4) 
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Here -prc = -(X, -j- iY,) is the principal vector of the forces applied to the set of cuts 
L, from the side of Ek per unit thickness of the plate. We shall assume that the numbers 

P,%P, are known. In some cases, e.g. in the first fundamental problem A, it is sufficient 

to specify one of these numbers, while the other is found from the boundary conditions and the 
condition of equilibrium of the whole system of plates E,, Ez or from other auxiliary con- 

ditions which will be discussed later. At the ends of the cuts the functions Qrr, 8, may 
become infinite of order less than unity, and at all remaining points of the cuts they will 
have continuous boundary conditions. Moreover, we shall assume that 

(2 -Z)& (2)30 as a-tt+, k = 1, 2 (1.5) 

at all points of the cuts except the end points. 
In all the problems discussed below the above condition is satisfied by virtue of the 

H-continuity of the given boundary conditions. 

2. Problem A. lo. FomrmZation of the problem. We shall assume that at the non-joined 
edges L1+ and L,- we know either the normal and shear stresses (cl/. %J1+ and (o&l? svL- 
(the first fundamental problem A), or the derivatives in x of the displacement components 

(It', n71+ and (u', u'); (the second fundamental problem A), or that we know the stresses 
(a,, ~,~)r', at one of the edges, e.g. at L,+, and the derivatives of the displacements (U', v'), 
at the other edge L; (the f un amental mixed problem A). d In all cases we assume the given 
boundary conditions to be H-continuous, and in the second problem we have 

- (u' -+ iv'),-I& = 0, j = 1, 2, . . ., m (2.1) 

which expresses the uniqueness of the displacements under the total passage along the cuts 
over the segment ti in the plates E1 and Es. 

Since in this case the system of plates El,& with identical edges L,+ and L,- 
represents a Riemannian surface of the function (l.l), it follows that the problems formulated 
above can be regarded as problems on this surface with a three-dimensional cut with the edges 

L1+ and L,-, situated in different planes E, and Ea. 

2*. The boxcars vaZue probZem for eompZez potentids. Using relations (1.2) and con- 
dition (1.5) we can write the boundary conditions at the edges L,' and L,- for all 
problems A fn the following unique form: 

where vk = 1% fz 0) = (o* - &Jt* and vg= -xR, fk (8) = -2pr (u' -I- Iv'),* provided that the 
stresses or displacement derivatives are specified on L,*. The superscript plus is taken at 
k =l, and the superscript minus at k ~2. The joining of the edges Lr- and La+ without 
stretching is described, by virtue of (1.2) and (1.5), by the relations 

By the same token we obtain the functions C&.,8, (k = 1,2) from the Riemann boundary 
value matrix problem 

Q+ (t) = A-%@- (t) + A-If (t), t E L (2.2) 
@ (4 = co1 {@I9 %, %, w, f (4 = cd {fl, fe, 0, 0) 

!I % 0 0 01 II 0 0 --1 oJ/ 

The function @(se) may become infinite of order less than unity of the ends of the line 
L, and in the neighbourhood of M it has, by virtue of (1.3), the form 

ts, (2) = G + Hz-' + 0 (C") (2.4) 
G= co1 &,y~r7r i- &',Jz -f- K'}, 

H= (2n)-'co1 (- P,!, - P,",x,P,~,x&'& Pko = Ph/( 1 -I- x,), k I 1,2 (2.5) 
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where C?(@) is a vector function whose every component will be comparable, at large z, with 
2-a. 

3'. The solution of the prob2em. Let h, (k = 1,2,3,4) be the eigenvalues of the matrix 
A-‘B. In the case of the first and second problem we have 

where VI = Y2 = 1 in the first problem, and y1 = -x1, v2 =-x, in the second problem, while 
in the case of the mixed problem all h, will be complex and given by the equation 

(3 +x2) A4 - (2% - $L (x1 + x,)) AZ + x2 (1 + fix,) = 0 (2.7) 

We assume that all roots of this equation are different. Then /4/ there exists a non- 
degenerate matrix S such that the matrix SmlA-‘BS will be diagonal with the numbers h, (k= 
1, 2, 3, 4) serving as its diagonal elements, and the columns of the matrix S will be the 
eigenvectors of the matrix A-‘B. The form of the diagonal matrix will be independent of the 
choice of these vectors. For example, we can take as S 

s= (23) 

The symbol II . . . I~=LLW denotes here a four-column matrix whose k-th column consists of 
the elements shown within the bracket. In what follows, we shall also encounter the symbol 

II . . . II:=‘, which denotes a column vector consisting of the four elements shown within the 
bracket. 

We shall seek the function @ (T) in the form 

Q, (2) = SF (z) (2.9) 

where P (z) = 11 F, II:=' is a new unknown piecewise-holomorphic vector function. Then from (2.2) 
we obtain 

Fk+ (t) = IQ',- (t) -i- g, (t), t E L, k = 1, 2, 3, 4 (2.10) 

where g, are components of the column vector II g,II:=* = S-‘A-‘j. The functions F, may become 
infinite of order less than unity at the ends of the line L, and near 30 they will have, by 
virtue of (2.4) and (2.91, the form 

II F, I];=’ = F (z) = S-Q = S-‘G + S-‘Hz-’ + 0 (z-“) (2.11) 

According to /5/ the solutions of problems (2.10) will be the functions, which we shall 
write in the following unique form in order to facilitate the subsequent calculations: 

(2.12) 

(2.13) 

ak + ipk = (In h,)/(2ni), k = 1, 2, 3, 4 

where lnh, are defined in such a manner that O< Imlnh,<%, and in the case of multi- 
valued functions X1, we take the branches which are single-valued in the place with a cut in 
L and satisfy the conditions limz*X,(z)=l as Z-+00. Moreover, since hl = 1, we must 
put in the first and second problem 

Xl (z) = 1, Cl1 = Cl, = . . . = Clrn = 0 (2.14) 

In the first and second problem we obtain, from (2.11) and (2.12), taking into account 
(2.14), 
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II II clo 1) - Pw 1 g,(t) df I/ 

Czm I= S-1G, ‘3, m-l: ‘%m = S-‘H 

%I?% 

R 

5, m-1 + w3?n 

C4m C4, In-l + qac4?n 

Qk = (CCK + q=Q (a, + 62 +. . . + a,) + (1 - ak - ifik) (4 + b, + . . . . + bm) 

(2.15) 

The form of the first element of the column vector S-lH follows from the boundary 
conditions and the condition of equilibrium of the construction A. In the mixed problem, 
(2.11) and (2.12) yield 

11 CkV%ll:=1 = S-'G, 11 ck.m-1 + &&,? II:=' = S-'H 

where qk are found in the same manner as in the first and second problem. 

(2.16) 

4O. Determination of the constants ck,. If m = 1, then relations (2.14)-(2.16) will 
yield the values of all the constants cKj* When m>l, to determine the remaining con- 
stants in the first problem we must require that the displacement increments along the closed 
curves formed from the cut edges Z,(j = 1,2, . . ., m - 1) in every plate E,,E, and the curves 
formed from the segments [bj, U~+~] (j = 1, 2, . . ., m - 1) situated in E1 and Es, be equal to 
zero. This can be explained by the fact that construction A represents a (3m - 2)-ply con- 
nected region on the Riemannian surface of the algebraic function (1.1) /6/. We have in this 
region 3m - 3 of the mutually non-homotopic closed curves such that all remaining closed 
curves can be obtained from them by (one or several) continuous deformation(s) within the 
boundaries of the region. The curves shown above, along which the displacement increments 
must be equal to zero, are examples of such non-homotopic curves. From this we obtain, using 
(1.21, (2.3) and (2.9), 

i h%k + ‘%k) s tFk+ @) - Fk- (t)) dt = o 
k=l Lj 

(2.17) 

i (%&k + s,,) 1 (F,+ (t) - F,- (t)) dt = 0 (2.18) 
k=1 ’ j 

“jtl 

%%k - 63,) - &Sak + Sbk) 1 Fk (t) dt = 0 

j=l,2,...,m--S 

(2.19) 

where S,, are the elements of the matrix S. Replacing P, in these equations by their values, 
we obtain a system of 3m -3 linear algebraic equations for determining the remaining 
3m-3 constants ckj(k=2,3,4;j =O,l,..., m-2). The unique solvability of this system 
is proved in the same way as the classical case (/3/, p.442). 

In the second problem conditions (2.18) follow from conditions (2.1) and (2.17), there- 
fore they must be replaced by specifying additional m -1 conditions. These conditions 
will be obtained, provided that the difference between the displacements of the points b, a,+r 
are known. Then, according to Eqs.(l.2), (2.3) and (2.9) we will have 

i, (%%k - ‘3,) ‘tlF k @) dt = $1 [u (Q+I) + iv (aj+z) - u (bj) - iu (b)l~ 
bj 

(2.20) 

j=1,2 ,...,m-1 

Instead of the difference between the displacements of the points b, and a~+~, we can 
also specify the principal vectors of external forces acting on the non-joined edges of the 
cuts 1; in plate E,, and lj- in plate Ez, together or on one of the edges. Then one of 
the following conditions must hold (j = 1, 2, . . ., m - 1): 

2P SlkFk+ (t) + &kFk- (t)) dt = it?jl 
I 

(2.21) 

S&k- (t) -k SIkFk+ (t)) dt = - @jz (2.22) 
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(2.23) 

where Qjll Qjz and Qj are the principal vectors of external forces acting, respectively, 
on the edge l,', in plate &, on the edge lj- in plate 

& and lj- in E,. 
E,, and on the set of edges lj' in 

The conditions (2.17) and (2.19) and one of the conditians (2.203-(2.233 
form, at every j(j=l,2,...,a- I), a uniquely solvable system of 3m- 3 equations for 
determining 3m - 3 unknown constants Ck& and different conditions can be taken from the 
group of conditions (2.20)-(2.233 for different j. 

In the mixed problem for determining 4m -4 constants 
m- 2) 

C,j(k = 2,3, 3,4;j=o,1,..., 
, we must take the conditions (2.1'?f-(2.19) and one of the conditions (2.20)-(2.23) 

for every j. The conditions form a uniquely solvable system of !KV --(I equations. 

5O, Methods of specifying the numbers P,, P,. In the first problem it is sufficient to 
specify one of these numbers. The other number can be found from the relation 

expressing the equilibrium of the whole construction A, Both these numbers can also be found 
if the difference between the displacements of any two tips of the cuts is known, e,g. the 
displacement between the points CZ~ and 4, Such a situation arises e.g. in the following 
problem: for the given stresses in A,+ and L,- to choose the numbers P,,P2 so that the 
displacements of the points u1 and tr,. differ from each other by a prescribed amount. 

In the second problem we should specify both numbers P,,P,, or one of them, and in 
order to determine the other one we should specify the principal vector of external forces 
applied to one of the edges 
p, 

L1+ and L,-, or to the set of edges L1+,Lz-. The numbers P,, 
can also be found if the principal vectors of the forces acting at the edges 

L%- respectively are given, 
LX+ and 

In the mixed problem both numbers PI, p, must be specified, or one of them and the 
principal vector of external forces acting on L,-. Then the other number can be found from 
the condition of equilibrium of construction A. 
numbers PI, Pt. 

Other methods also exist of specifying the 

6'. The bshuviour of the stresses ati dispZacement derivatives near the cut ends. ACCO~CI- 
ing to (2,121, the functions F~(z} in the first and second problem have the following form 
f5/ near the point z =aj: 

F* 64 = Dof in (z - Osj) + 0 (1)~ B,j = -&I (aj)i23Ti (2.24) 

Ft (z) = D,j (Z - a~)-a”-iPk + 0 (I), k = 2,374 (2.25) 

(2.26) 

The functions 
mean by (z - uj)ak+igfi 

x,7 g, are given by (2.131, the numbers crj are defined above, and we 
the branch, 

=) 
single-valued in the plane with a cut along the ray Ia,, + 

of the real axis, which takes the value 1 at the upper edge of the cut at 
The integral in (2.26) exists as an improper integral, 

z-Lzj =1. 

Fk, including F,, 
In the mixed problem all functions 

have the form (2.25)+ In the first and second problem we find from (1.2)‘ 
(2.31, (2.91, (2,241 and (2.253 the following asymptotic representation of the stresses and 
displacement derivatives near the paint z = aj in plate E,: 
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The constants aL, fir, Sit and Dk, are given by (2.6), (2.8), (2.13) and (2.26), re- 
spectively. 

In the mixed probl 
to 4. The constants a, 

.em we must take all sums in the above representations over k, from 1 
and fiti are found from (2.13) and (2.7). 

In order to obtain the analogous representations near the point z = bl in the plate E,, 
we must replace aj in (2.24)-(2.27) by b,, ai+ ifi, on 1 - ak - ifik, and to obtain the 
representations near the tips of the cuts in the plate E, we must replace x1 by x2.7 Pl by 
E? and the numbers Srk and SSk by SSk and S,, (k = 1, 2, 3, 4), respectively. 

The numbers Dki in representations (2.25) and (2.27) play the part of the stress 
intensity coefficients, and are used in calculating the invariant r-integrals /7, 8/. 

From the representations (2.27) we see that the stresses and displacement derivatives 
near the point z = ej have, in general, not only power-type singularities, but also oscil- 
latory singularities determined by functions of the form (2 - ej)-iBk or, without loss of 

generality, by a function of the type [(z - al)/(bj - aj)ImiPk. Here, in the case of the first 
and second problem, the highest-order singularity is determined by the function (2 _ ej)-ifPl,~ 

A similar pattern is observed in e.c. t/3/. ch.6) the classical nroblem of a stamn. or in a 
mixed problem for a plane with rectilinkar'cuts. According to relations (2.13) and (2.6), 

In particular, 
type singularities. 
it follows that its 

plates) and @L> 0 

if pLh = (Y,x, - vz) / (vzxI - vl), then fi, = p4 = Oand we have nooscillatory- 
Since the expression under the In sign increases as a function of ph, 

values at '19<x1, x,( 3 (these constants are such in the case of real 
lie between 1/s and 3. Therefore 

I & 1 = ( fJ4 I< (ln'3)/4n,_ 0.0874 

and the oscillatory-type singularities will manifest themselves appreciably only when 

I z - aj I < (bj - at) exp [-2n2/ln 31 z 1.573.10-* (bj - a,) (2.28) 

where (bj - al) is the length of the cut I,. Clearly, the representations (2.27) occur near 
the point z = aj outside a sufficiently small neighbourhood determined by the inequality 
(2.28). 

7'. A special case. Let us consider the case when we have a single cut [a,, a,]= [-~,a] 

and x1 = x, = x, p1 = pLa, h, = h,, i.e. when the construction A represents a homogeneous Riemannian 
surface of constant thickness. We can then write the solutions of all problems A in the 
unique form 

where in the first 
and second problem 

llckO + qkckl if=’ = .FH, (( c,,~f= = P'G, ))gk if=' = S-'A-lf(t) 

and mixed problem Y = VI= 1, in the second problem v=--x, in the first 

h 1, 8 = i-4, hB, 1= *i, 91, I = 0, &,r = +a12 

x, (2) = (I -a~(k+‘~(z +c~)(~-~)‘~, k = 2,3, 4 

in the mixed problem 

hk = x"~ exp [in (2k - 1)/41, q,i = a (5 - 2k + Sip)/4 

x,(q = cz__ q-LP+@k-9)/8 (,+.,#+Mt)/s, p= &?, k = 1, 2,3,4 

and the column vector G,H,f and matrix A are given by (2.5), (1.4) and (2.3). 
Relations (2.27), in which we must put 

okj cz) = (z _ 0)(k-5)/J or ok, (z) = (Z _ qiP+@k-9)lS 
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hold for the stresses and displacement derivatives near the point a. The largest singularity 
in these representations is determined in the first and second problem by the function (Z- 
.)-"a, and in the mixed problem by the function (Z - .)-i@-7's. 

3. Problem B. As in problem A, we assume that either the stresses ('the first problem 
B) or the displacements (the second problem B) are specified at the non-joined edges L,+ and 
La+, or the stresses are specified at one edge and the displacements at the other edge (the 
mixed problem B). In addition we must specify the boundary conditions on the line along 
which the edges L,- and L, are joined (Fig.2b). If it is the displacements that are 
specified on this line, then problem B separates into two independent problems separately for 
plates E, and E,, solved in /3/. We shall assume that the external forces (X + iY),,t are 
specified on this line. Then we shall obtain the Riemann matrix problem (2.2) with coef- 
ficients 

Y,O 00 0 0 -1 01 fl 

A=O% 00 B= 0 0 0 -1 0 0 -/.&I' -p, x2 0 0 ’ f(O= k 

00 IA, -1 --h 0 0 ,f4 

where 

or 

Yt = 1, fh (t) = (oy - ir&+ 

vk = -xk, fh. (t) := --2)& (U' + iU')k+ (k = 1, 2) 

for determining the complex potentials @r,@,,,&,S&, forming the column vector D(z), depend- 
ing on whether the stresses or displacements are specified on Lk+. From then on problem B 
is solved just like problem A. Moreover, all results obtained for problem A in subsection 
3"-6O of Sect.2 hold for problem B with the sole difference, that the eigenvalues h, of the 
matrix A-lB are changed as well as the matrix S whose columns are eigenvectors of the 
matrix A-‘B. In the case of the first and second problem B we have 

&,s = *I, h,,, = ii [(@Lx1 +x2) / (v1yz (PA + I))]'/1 

while in the mixed problem all hk are complex and given by the equation 

x, (MLh + l)h4 + (r_lh (1 t X&) - 2%) A*+ $x, + x2 = 0 

The matrix S has the form 

s= 1 + px1 + +ka @ - I) 
- Y&k (x2 - h + v&k' (h -t 1)) 

- ,$“k (1 + @I + vlhka (p - I)) ,k=L 2,3. 4 

The author thanks D.D. Ivlev for his help in preparing this paper. 

REFERENCES 

1. 

2. 
3. 

ESHELBY J., Continuous Theory of Dislocations. IIL, Moscow, 1963. 
FRIEDEL J., Dislocations. Pergamon Press, 1964. 
MUSKHELISHVILI N.I., some Fundamental Problems of the Mathematical Theory of Elasticity. 
Nauka, Moscow, 1966. 

4. 
5. 
6. 
7. 

SMIRNOV V.I., Course of Higher Mathematics. Nauka, Moscow, 3, 1 and 2,1974. 
MUSKHELISHVILI N.I., Singular Integral Equations. Nauka, Moscow, 1968. 
CHEBOTAREV N.G., Theory of Algebraic Functions. Gostekhizdat, Moscow-Leningrad, 1948. 
CHEREPANOV G.P., Invariant P-integrals and some of their applications to mechanics. PMM 

41, 3, 1977. 
a. CHEREPANOV G.P., Mechanics of Fracture of Composite Materials. Nauka, Moscow, 1983. 

Translated by L.K. 


